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Parallel solution of lifting rotors in hover and forward flight
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SUMMARY

An implicit unsteady, multiblock, multigrid, upwind solver including mesh deformation capability, and
structured multiblock grid generator, are presented and applied to lifting rotors in both hover and forward
flight. To allow the use of very fine meshes and, hence, better representation of the flow physics, a parallel
version of the code has been developed. It is demonstrated that once the grid density is sufficient to
capture enough turns of the tip vortices, hover exhibits oscillatory behaviour of the wake, even using a
steady formulation. An unsteady simulation is then presented, and detailed analysis of the time-accurate
wake history is performed and compared to theoretical predictions. Forward flight simulations are also
presented and, again, grid density effects on the wake formation investigated. Parallel performance of the
code using up to 1024 CPU’s is also presented. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Simulation of lifting rotor flows is expensive for compressible finite-volume codes, as the complex
vortical wake needs to be captured over several turns of the blades to obtain the correct blade
loads. This requires fine meshes away from the blades and a long numerical integration time for
the wake to develop, which can lead to impractical run times. Hence, parallelization of the flow-
solver is essential to be able to consider grid densities of practical use for these flows, and this is
considered here. A finite-volume, upwind scheme using multiblock structured meshes is presented,
which includes steady and unsteady time-stepping options and time-accurate mesh deformation
capability. To allow the use of very fine meshes and, hence, better wake and vortex capturing, the
code has been parallelized using MPI [1], and is applied to lifting multi-bladed rotors in hover
and forward flight.
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Experimental data for rotors in hover, for example, References [2–5], have suggested the wakes
are actually unsteady. This has been confirmed by theoretical stability analyses [6–8], which imply
a hovering rotor wake is fundamentally unstable with several unstable modes. Other simulation
methods, for example, free-vortex or free-wake [8, 9] or vorticity transport methods [10, 11],
with low inherent dissipation, have also shown evidence of unsteady hover wakes, confirming
the theoretical and experimental data. However, there has been little published work on wake
unsteadiness using compressible CFD simulation, primarily because these flows are normally run
with a steady solver, and with insufficient grid densities to capture enough of the wake for any
instability to manifest itself. This is considered here.

Forward flight simulation adds the further complications that an unsteady solver must be used,
and the entire domain must be simulated (rather than just the part domain associated with one
blade for hover cases). This can significantly increase the cost of the simulation, but the solution
now evolves faster, and the effect of grid density away from the blades is less significant, since
the wake is swept downstream rather than form below the blades. Forward flight is also simulated
here and, again, grid dependence of the wake formation is considered.

Steady and unsteady formulations of the flow-solver are first presented, followed by aspects
of the parallelization approach used. Inextricably linked to the flow-solver is the grid generation
approach, and so this is also discussed for structured multiblock grids for rotors in hover and
forward flight. Numerical solutions for lifting rotors are then presented and examined, particularly
in terms of vortical wake capturing properties, and grid dependence, using up to 32 million points
for a four-bladed case. Parallel performance of the code using up to 1024 CPU’s is also presented.

2. FLOW-SOLVER

2.1. Steady approach

Hover simulation requires a rigid but rotating grid. The equations are transformed to a blade-fixed
rotating reference frame as in this frame the hover case is a steady problem. Absolute velocities are
used. If the frame rotates with angular velocity �= [�x , �y, �z]T, and the absolute velocity vector
in the rotating frame is denoted by qr = [ur , vr , wr ]T, the resulting Euler equations in integral form
are then:

d

dt

∫
Vr
Ur dVr +

∫
�Vr

Fr · nr dSr +
∫
Vr
Gr dVr = 0 (1)

where

Ur =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

�ur

�vr

�wr

E

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Fr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�[qr − (�× r)]
�ur [qr − (�× r)] + Pir

�vr [qr − (�× r)] + Pjr

�wr [qr − (� × r)] + Pkr

E[qr − (�× r)] + Pqr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Gr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

�(�×qr) · ir
�(�×qr) · jr
�(�×qr) · kr

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

Here Gr is the source term resulting from the transformation, and r= [xr , yr , zr ]T is the coordinate
vector. This is a steady case, as the grid speeds are constant, i.e. the coordinate vector is constant
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PARALLEL SOLUTION OF LIFTING ROTORS 17

in the rotating frame. The equation set is closed by

P = (� − 1)
[
E − �

2
q2r

]
(3)

2.1.1. Spatial discretization. A finite-volume upwind scheme is used to solve the integral form of
the Euler equations (Equation (1)). The flux-vector splitting of Van-Leer [12] is used, along with
a third-order spatial interpolation and the continuously differentiable flux limiter due to Anderson
et al. [13].

To avoid introducing errors due to the evaluation of the rotational terms, the local (�× r) terms
are evaluated by solving for cell face area moment vectors, and satisfying the resulting conservation
condition [14, 15]. (More details of the spatial scheme can be found in Reference [15].)

2.1.2. Explicit time-stepping scheme. An explicit three-stage Runge–Kutta scheme is used to
integrate the equations forward in time, including local time stepping.

2.1.3. Multigrid scheme. It has been shown previously that multigrid is effective for hovering
rotors using a steady approach [15], and for forward flight using an unsteady approach [16], and
hence, multigrid acceleration is also adopted here. A V-cycle is adopted with a trilinear interpolation
of corrections within the prolongation steps.

2.2. Unsteady approach

Forward flight simulation requires an unsteady solution scheme. Furthermore, to allow the cyclic
pitch variation of the blades, to balance the forces and moments around the azimuth, the grid must
also deform. The Euler equations in integral form for a deforming mesh rotating in a fixed axis
system are then:

d

dt

∫
V
U dV +

∫
�V

F · n dS = 0 (4)

where

U=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

�u

�v

�w

E

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�[q − (�× r(t) + rt(t))]
�u[q − (�× r(t) + rt(t))] + Pi

�v[q − (�× r(t) + rt(t))] + Pj

�w[q − (�× r(t) + rt(t))] + Pk

E[q − (�× r(t) + rt(t))] + Pq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

The coordinate vector r(t) is time dependent in the fixed axis system, i.e.

r(t) = [R(�)]r(0) (6)

where [R(�)] is the time-dependent rotation matrix (� is the azimuth position, and so �= �t).
The �× r(t) term is due to the rigid rotation, but there is also the grid velocity associated with
grid deformation, and this is the rt(t) term in the above.
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18 C. B. ALLEN

The equation set is closed by

P = (� − 1)
[
E − �

2
q2

]
(7)

2.2.1. Implicit time-stepping scheme. An implicit form of the differential equation for each com-
putational cell is considered:

�(V n+1Un+1)

�t
+ R(Un+1) = 0 (8)

where V is the time-dependent cell volume and R is the upwinded flux integral. The implicit tempo-
ral derivative is then approximated by a second-order backward difference, following Jameson [17].

The multigrid explicit multi-stage Runge–Kutta scheme used for steady flows is used to
integrate the equations forward in pseudo-time, within each real time-step.

2.2.2. Mesh deformation. The mesh is deformed each time-step using a global parameterization
approach. The time-dependent cell volumes are then computed by satisfying the required geometric
conservation law [18]. Each blade has its own local axis system, and so everything associated with
mesh motion is computed initially at the t = 0 (�= 0) position, and then rotated to the instantaneous
� position. The same second-order backward scheme is used to compute the time-dependent grid
velocities as for the flow:

rt(t) = 1

2�t
[R(�)]{3rn+1 − 4rn + rn−1} (9)

2.3. Parallelization

The flow-solver has been parallelized using MPI [1], to allow the use of fine meshes. An algorithm
linked to the grid generator reads in the mesh dimensions, in the coarsest (in terms of number of
blocks) form, and splits it into more blocks, if required, while attempting to balance the number
of points on each CPU, and maintaining the maximum number of multigrid levels. This can be
run before the grid generation process, to optimize the mesh dimensions and load balancing.

Within the solver each block boundary only requires one boundary condition tag, a neighbouring
block number and an orientation flag to apply the correct internal or external conditions. Hence,
each block only requires the grid dimensions, the physical grid point coordinates, then six lines, of
three integers each, defining the boundary conditions. All sends, at each internal block boundary, are
performed by packing solution data and sending to the appropriate processor. Received boundary
data are then unpacked according to the orientation flag. This has the advantage that no cell
connectivity data are required in the grid file and, hence, there is no preprocessing or domain
decomposition stage. A separate file can be written for each block, and a header file created which
defines the block–CPU relationship and the name of each block file. The code has also been written
such that all parallel communication is performed in specific subroutines, and this means there is
no message passing in any of the fundamental routines.

The most significant aspect of this data structure is that there is no global flow or geometry
data storage. Only arrays of block dimensions and connectivity are required globally, which are
only 1D arrays of length nblocks, and this vastly reduces the memory requirements of the code.
All I/O is also handled locally, and so there is only one subroutine in the entire code that requires
any global data collection, and that is the monitoring routine. This simply collects the residuals
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Figure 1. Four-bladed multiblock hover mesh domain and block boundaries, and mesh
in selected planes, 2 and 32× 106 points.

and load components from each CPU, and writes to the output file. Avoiding any global storage
or collection of flow/geometry data means the code is extremely efficient in terms of memory; the
32 million point mesh cases shown later can be run with four levels of multigrid on 16 dual-CPU
nodes, with only 1 GB RAM per node, i.e. less than 0.5 GB/million points.

3. GRID GENERATION

An efficient grid generator has been developed that can generate multiblock meshes for fixed wings
and rotors in hover and forward flight. The grid is generated by first generating a blade-fixed grid
around the solid surface, using a variable periodic transformation [19]. From this near-blade grid,
cylindrical grids are generated upstream, downstream, above and below the blade to fill the required
domain. This domain is a (1/N )th part cylinder, where N is the number of blades. In forward
flight extra blocks are added to mesh the hub, which is transformed to a spherical shape, and the
flow regions above and below (these are not required for hover). The mesh is then repeated and
rotated, to fill the entire domain.

A transfinite interpolation algorithm [20, 21] is used, with improved orthogonality and stretching
functions, to compute the grid within each block. After generating the entire mesh an elliptic
smoothing is applied [22].

A wake grid dependence study has been performed, considering the ONERA 7A blade [23],
and meshes of density 2, 8, and 32 million points were generated. Figure 1 shows the domain and
block boundaries for a 120-block periodic hover mesh, and the grid in selected grid planes (hub,
rotor surface, and planes near the tip) for 2 and 32 million points, for a four-bladed case. Figure 2
shows domain and block boundaries for a 192 block forward flight mesh, and views of the rotor
disk grid for the 2 and 32 million point meshes.

4. 7A ROTOR HOVER SIMULATION

The case simulated was MTip = 0.661, and was run with meshes of density 2, 8, and 32 million
points. The spanwise far-field, i.e. radius of sector, was set at 80 chords, the upper boundary
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Figure 2. Four-bladed multiblock forward flight mesh domain and block boundaries,
and mesh in rotor disk, 2 and 32× 106 points.
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Figure 3. Four-bladed 7A hover. Pressure coefficient at r/R = 0.7 and 0.92.

at 80 chords, and lower boundary at 150 chords. Characteristic conditions are applied at these
boundaries.

Figure 3 shows the surface pressure coefficient variation at two radial stations, for the three mesh
densities, compared to experiment. This shows excellent agreement, although it also demonstrates
the grid dependence as there is a noticeable difference between the 8 million and 32 million cases
at r/R = 0.92.

The vorticity in the downstream periodic plane near the rotor is presented in Figure 4 for the
three grid densities (this is the plane 45◦ behind the blade). The position of the rotor is also shown
for clarity, and all figures show 151 contour levels between 0.01 and 2.0. The lower-right figure is
a wider view of the 32 million point case to show how many vortex turns are captured. The grid
dependence is clearly demonstrated here. The vortex sheet is also much more evident in the 32
million point case, with around one and a half turns captured.

Figure 5 shows the convergence histories of the steady simulations. The residual for the 32
million point case becomes periodic, showing that unsteadiness in the wake is now being captured.
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Figure 4. Four-bladed 7A hover. Vorticity contours in downstream periodic plane, 2× 106

(top-left), 8× 106 (top-right), 32× 106 points.

As discussed in the Introduction, previous work has shown that hover is not actually a steady
case, but little, if any, has been presented on simulation of unsteady hover flows using finite-volume
CFD methods. Stability analysis [8] shows that the wake should actually be in periodic equilibrium,
but is unstable to all perturbations. Hence, any experimental or numerical result is almost certain
to become unstable, due to any perturbation.

5. UNSTEADY 7A HOVER SIMULATION

This case was also run as an unsteady case. A 32 million point ‘steady’ solution was used as the
initial solution, and the unsteady solver started with a few very small time-steps, and this was
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Figure 5. Four-bladed 7A hover simulation convergence histories.

gradually increased to a constant 90 time-steps per revolution. The solution remained unsteady for
40 computed revolutions.

5.1. Time history analysis

The vorticity time history computed on the downstream periodic plane was analysed to extract
the unsteady motion frequencies. To reduce the amount of data, the periodic plane was split into
several smaller planes, each of which was further split into 12 sub-blocks, and the total vorticity in
each sub-block summed at each time-step. Fourier transforms of this quantity were then computed
over the entire simulation.

Figure 6 (left) shows the Fourier coefficients for one of the planes, for the frequency range,
relative to the rotation frequency, of 0 to 100, and right is the lower frequency range only for this
plane. Hence, there are distinct peaks around 1, 4, and 8 times the rotation frequency and another
at 90 times rotation frequency. The higher peak is due to the time-stepping input, as there are 90
time-steps per revolution. Similar results were found in the other planes.

5.2. Theoretical comparison

Linear stability analysis of hovering rotor wakes has previously been published [8], and showed that
all wave numbers (modes) are unstable to all perturbations. Hence, any mode which is perturbed
will be unstable. In the unsteady simulation above, three distinct modes have been captured, and
these are all multiples of the rotor frequency. Hence, these can be assumed to have been perturbed
by the numerical time-stepping scheme. However, there are expected modes that have not been
excited, for example, the modes associated with vortex pairing. These are associated with wave
numbers N (k+1/2) where N is the number of blades, and k is any integer� 0. These are physical
modes, and are not captured due to the dissipation of the vortices. Hence, the wake is unstable
to perturbations, as predicted, but the instabilities appear to be due to the numerics and not the
physics.
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Figure 6. Fourier transform of total vorticity time-history in sub-blocks.
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Figure 7. Parallel performance of the code.

6. PARALLEL PERFORMANCE OF THE CODE

The code has been run on the National Supercomputer HPCx, and benchmarks performed. Figure 7
shows the speed-up obtained using from 32 up to 1024 CPU’s (actually for a 20 million point
case).‡ A factor of one was used for 32 CPUs as fewer than this were not used. Hence, the code
has been awarded a Gold Star for scaling performance by the National Supercomputing Centre.

‡Figures produced by Andy Sunderland of the Terascaling Team at the National Supercomputing Centre.
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7. THE 7A ROTOR IN LIFTING FORWARD FLIGHT

A lifting forward flight test case was also run with the 7A rotor. The case considered has a tip
Mach number of 0.618, and an advance ratio, �, of 0.214 (� = MFF/MTip). The case also has a
shaft inclination of −3.72◦, i.e. backward, so has significant blade vortex interaction effects. The
collective pitch setting is 2.74◦, and the cyclic pitch variation,

�(�) = �c cos(�) + �s sin(�) (10)

is determined by: �c = 2.66◦, �s = − 2.24◦.
The case was run as an unsteady simulation, using 360 real time-steps per revolution, and the

third revolution was taken as converged. Meshes of density 2, 8, and 32 million points were again
used.

Figure 8. 7A Forward flight �2 isosurface, 2× 106 (top-left), 8× 106 (top-right), 32× 106 points.
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Figure 9. 7A Forward flight sectional blade loading. r/R = 0.50 and 0.82.

Vorticity contours (or shading) are often used for visualization. However, this is not always ideal,
particularly for this type of flow where the rotor hub can create significant vorticity. Hence, the �2
quantity [24, 25] has been used here instead. This can identify local pressure minima associated
with spin alone, so can be used to identify vortex cores more accurately than simply using local
vorticity magnitude. Figure 8 shows an isosurface of �2 (at a small negative value) for the 2, 8,
and 32 million point grid densities, at the �= 0◦ position. This shows the paths of the tip vortices.
The grid dependence is also clear, with more details emerging, due to preservation of the vortical
wake over longer distances, as the density is increased.

To investigate this further, the sectional blade load coefficient was evaluated around the azimuth,
at two radial stations. The results for the three mesh densities are compared with experimental
data in Figure 9. Hence, the general trends are captured well, even for the coarsest mesh, but more
details are beginning to emerge at high densities.

8. CONCLUSIONS

An implicit unsteady, multiblock, multigrid, upwind scheme, with deforming mesh capability,
has been developed and validated, and used to compute four-bladed lifting test cases in hover
and forward flight. A structured multiblock grid generation algorithm for rotors has also been
developed and presented. Furthermore, to allow the use of fine meshes, vital for these type of
flows, the flow code has been parallelized.

For hovering rotor solutions it has been shown that once sufficient points are used to capture
enough turns of the wake, the solution does not converge to a steady state solution, instead exhibiting
oscillatory wakes. This agrees with other published results using less diffusive formulations,
theoretical stability analysis, and experiments. An unsteady simulation of the same case has also
been performed, and detailed analysis of the time-accurate wake history has shown that three
distinct modes have been captured, with frequencies of 1, 4, and 8 times the rotational frequency.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:15–27
DOI: 10.1002/fld



26 C. B. ALLEN

However, other unsteady modes, for example, those associated with vortex pairing, have not been
captured. Hence, it must be concluded that the wake is indeed unstable to perturbations, as predicted
by theory, but the instabilities are due to the numerics rather than the physics.

Forward flight simulations using the same rotor have also been presented, and again significant
grid dependence of the vortical wake capture demonstrated. The local �2 value has been used for
visualization of this flow, and is shown to be very useful to identify vortex trajectories, rather than
the local vorticity vector magnitude that is often used.

Parallel performance of the code has been presented, showing that almost linear scaling has
been achieved using up to 1024 CPU’s.
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